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bstract

A new semi-empirical model, particularly useful for studying complex dissolution kinetics, is presented here. It uses only two ‘fit parameters’,
ach possessing physically relevant units (in the time domain). The model is based on the idea that dispersion (variation) in the activation energy
arrier may arise in certain cases, as a result of (quantized) molecular kinetic energies affecting the speed of the rate-determining step (r.d.s.) of
he dissolution event. For such ‘dispersive dissolutions’, the r.d.s. is assumed to involve 2D denucleation. The author’s dispersive kinetic model is
hown to be applicable to the dissolution of various formulations of norfloxacin which produce very asymmetric, sigmoidal concentration versus
ime (C–t) profiles. It is derived by assuming an activation energy distribution having the functional form of the Maxwell–Boltzmann (M–B)

istribution, coupled with a first-order rate expression. However, this model can also be reduced to give the same functional form as the classical
oyes–Whitney equation, in order to accurately fit/describe dissolution profiles which appear logarithmic (such profiles are due to dissolution
henomena that are not dispersive; i.e. for cases where the activation energy is essentially single-valued). Thus, the kinetic model presented in this
ork may potentially find broad applicability to the modeling of various dissolution trends observed in the literature.
2007 Elsevier B.V. All rights reserved.
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. Introduction

Dissolution research has grown in importance in the phar-
aceutical sciences over the last century, mainly due to the

ncreased awareness of the community of the fact that the disso-
ution properties of drug products can often help predict their
ioavailability. However, dissolution research is also impor-
ant in other fields, including geology and cosmology, e.g. [1].
nfortunately, the ‘universal modeling’ of dissolution kinetics
sing a mathematically simple equation, and, thus, an accurate
xplanation for all types of dissolution behavior (i.e. various con-
entration versus time, C–t, curve shapes), has remained largely
ut of reach. Beyond the simple, first-order, Noyes–Whitney
quation and the highly specific, mathematically complex,
umerical methods of present-day (which are based mainly on

ick’s laws of diffusion and various macroscopic properties of

he solids under investigation), the fundamental mechanism(s)
f dissolution is/are not completely understood.
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This work presents a novel ‘dispersive kinetic’ model for
issolution processes, which the author believes may be very
eneral (perhaps universal) in application. That is because
he model introduces a fundamental, microscopic property of
ll converting (i.e. reacting/transforming) systems: quantized,
olecular kinetic energies. Although the development of this
odel has been described in previous works and its application to
odeling various ‘homogeneous dispersive’ solid-state conver-

ions, i.e. those producing deceleratory, sigmoidal C–t curves,
as been discussed (as will be described later in Section 2), this
ork represents the author’s initial attempt at using the model

o study dissolution phenomena. The author has selected to try
o apply the model to the dissolution of various norfloxacin for-

ulations in this work, because of the challenging curve shapes
roduced by this compound.

.1. Background
A recent review of the dissolution literature has been pub-
ished [2], providing a historical perspective of dissolution

odeling from the Noyes–Whitney equation to present-day

mailto:skrdla@earthlink.net
dx.doi.org/10.1016/j.jpba.2007.06.012
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umerical methods, e.g. [3]. Additionally, Dokoumetzidis and
o-workers discuss in their review the development and use of
he Biopharmaceutics Classification System (BCS), as a basis
or establishing relationships between dissolution and bioavail-
bility. The reader is referred to this work for additional details
egarding current dissolution technology and practices.

The isothermal Noyes–Whitney equation, originally pub-
ished in 1897, relates the rate of dissolution of solids to the

acroscopic properties of the solid and the dissolution medium.
n 1904, Nernst and Brunner modified this equation by apply-
ng Fick’s First Law of Diffusion to establish a relationship
etween the dissolution rate and the diffusion coefficient. The
ernst–Brunner equation may be written as

dC

dt
=

(
DA

LV

)
(Cs − C) (1)

here dC/dt is the rate of dissolution of the compound (typi-
ally, the active pharmaceutical ingredient, API), D the diffusion
oefficient of the molecule, L the diffusion layer thickness, A the
urface area of the solid, V the volume of the dissolution medium
which is stirred rapidly to ensure homogeneity), C the concen-
ration of the dissolved solid in the dissolution medium and Cs
s the concentration of the dissolved solid in the diffusion layer
urrounding the solid. Despite the maturity of Eq. (1), this disso-
ution model remains widely used in present-day pharmaceutical
esearch.

Upon further inspection, it is clear that Eq. (1) is reducible
o a simple, first-order (i.e. F1) kinetic model. The integrated
ersion of Eq. (1) may be written as

C

C∞
= 1 − exp(−kt) (2)

here C∞ is the dissolved concentration as t → ∞ and k is the
ate constant (i.e. as defined by the classical Arrhenius equation).
ote that k has units of (time)−1 for a first-order rate law; also,
incorporates into it the term ‘DACs/LV’ of Eq. (1). This first-
rder model for dissolution adequately explains logarithmically
ncreasing ‘conversion–time’ (C–t, or C/C∞–t) kinetic profiles.

While many dissolution curves obey Eq. (1)/Eq. (2), a general
issolution mechanism has not been fully elucidated to this day,
.g. [4]. The most challenging feature of common C/C∞–t disso-
ution curves is their asymmetric, sigmoidal shape, which is not
roperly explained by these equations. This sigmoidal behav-
or has been (qualitatively) attributed to various macroscopic
vents, e.g. [5]: ‘mechanical lag’ and ‘wetting’ are believed to
efine the initial ‘induction period’, while both ‘disaggregation’
nd ‘disintegration’ are thought to contribute to the actual dis-
olution process, which follows the induction period. Because
t is poorly understood and difficult to model, some workers

ay select not to model the induction period in their kinetic
reatments.

Some of the most significant contributions to the dissolution
inetics literature, beyond Eq. (1), include the models proposed

y Higuchi [6] and Peppas [7]. These ‘1D Diffusion’ and ‘Power
aw’ models have proven their effectiveness in a wide range of
rug release studies. It should be noted that these models are also
ommonly employed in the thermal analysis literature [8–10].

m
a
‘
‘
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dditionally, they may find origin in the field of dispersive kinet-
cs [11,12], which will be discussed later. The general functional
orm of these models is given by

C

C∞
= ktn (3)

here n is a parameter whose value can be obtained from
urve-fitting of the C/C∞–t kinetic data. A key drawback of
he models based on Eq. (3) is that n is often empirical; i.e. it has
value which does not satisfy any particular model that has been
athematically derived to-date, e.g. [9]. Nonetheless, Burch

nd coworkers have utilized parallel (simultaneous) empirical
Power Law’ rate equations to model the dissolution kinetics of
lbite [13].

The so-called ‘Weibull function’ has a mathematical form
hich appears to combine Eqs. (2) and (3):

C

C∞
= 1 − exp(−ktn) (4)

q. (4) has been utilized in several works to describe dissolu-
ion and drug release kinetics, e.g. [14,15]. However, the use
f this model has received criticism because it also employs
he ‘non-physical’ (i.e. empirical) fit parameter, n. On the
ther hand, Eq. (4), with n = 2, 3 or 4, are often referred to
collectively) as the Avrami–Erofe’ev (A2–A4) models in the
hermal analysis literature, e.g. [8–10]. Eq. (4) may also be
alled the Johnson–Mehl–Avrami (JMA) model, for instance
hen it is applied to the crystallizations of pharmaceutical com-
ounds, e.g. [16]. From the dispersive kinetics literature, it has
ecently been found that the equation can be obtained from
he Kohlrausch–Williams–Watts (KWW) relaxation function or
stretched exponential’, utilizing the concept of ‘fractal time’
11,12]. However, as Eq. (4) was mathematically derived and
rst applied to solid-state conversions more than 60 years ago,
.g. see Refs. [17,18], its relatively recent introduction to disso-
ution research literature may be somewhat surprising.

Recent numerical methods have utilized macroscopic prop-
rties such as particle size distributions and fragmentation
unctions to describe dissolution, e.g. [3]. Unfortunately, many
f these approaches require the solution of simultaneous differ-
ntial equations, which may not be feasible in many analytical
aboratories [2]. Additionally, the use of macroscopic parameters
which may also include a particle ‘shape factor’, e.g. [3]) may
ake these models highly specific. Thus, a simple yet general

issolution model which can be applied to a wide range of crystal
orphologies, particle sizes, etc., to be used predominantly for

escribing/fitting highly asymmetric, sigmoidal C/C∞–t curves,
ay be very desirable. The author puts forth the present work
indful of this goal.

. Results and discussion

The author believes that the observation of asymmetric, sig-

oidal dissolution profiles, like many other phase transitions

nd chemical reactions involving the solid-state, may be due to
dispersion’ (variation) in the activation energy/rate constant of
classical kinetic’ (e.g. first-order) processes. Classical kinetics
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nherently defines a single activation energy and, hence, a single
ate constant (i.e. following the theories of Arrhenius or Eyring)
or each step of a given conversion. On the other hand, dispersive
inetics are typically observed in conversions for which the rate
f ‘system renewal’ (e.g. relaxation), is comparable to, or slower
han, the rate of the conversion [11,12]—in this case, dissolu-
ion. The result of this dispersion is a distribution of activation
nergies. If one assumes that this activation energy distribution
akes the functional form of the Maxwell–Boltzmann (M–B)
inetic energy distribution, it is possible, using Eq. (2), to derive
using a mathematical approximation for purposes of simpli-
cation [10]) the model equation shown below, as described
lsewhere [17,18]:

C

C∞
= 1 − exp{[αt][exp(−βt2) − 1]} (5)

n Eq. (5), α and β are kinetic parameters with units of (time)−1

nd (time)−2, respectively, which makes them akin to more tra-
itional (global) rate constants. The fact that Eq. (5) contains
nly two ‘fit parameters’, each with physically meaningful units,
elps make it a semi-empirical kinetic model (compared to Eqs.
3) and (4), which are most often applied empirically). Note that
n the derivation of Eq. (5), a dimensionality of two was assumed
ased on current knowledge of the mechanisms involved in
rystal growth and Ostwald ripening, e.g. see [18]. The author
elieves that the process of ‘2D denucleation’, particularly with
mall critical nuclei, may be involved in the rate-determining
tep (r.d.s.) of many dispersive dissolution processes (i.e. those
hich produce deceleratory, sigmoidal C/C∞–t profiles); it is

he molecular kinetic energies pertaining to this r.d.s. that are
uantized in the author’s model, as discussed previously [17,18].
owever, based on experience [16], Eq. (5) may also be used

o describe more logarithmic C/C∞–t profiles, for cases where
ispersion is not observed experimentally. That is because if
ispersion in the activation energy/rate constant does not affect
he dissolution rate, the overall rate constant for the process,
(t) (which is defined as k(t) = α′ exp(−βt2) for various homo-
eneous dispersive conversions in the author’s previous works
17,18]), becomes time-independent (because β = 0) and hence
ingle-valued, as per the Arrhenius/Eyring definitions. For such
ases, k(t) = α′, a constant (note: the ‘primed’ symbol serves only

o differentiate it from α in Eq. (5)), essentially reducing Eq. (5)
o Eq. (2).

The sigmoidal C/C∞–t dissolution curves collected by Dos
antos et al. [19] for various formulations of the API, nor-

v
o

i

able 1
inetic parameters extracted from the data points in Fig. 1 using regression fits of Eq

rrors

ormulation Fit quality, R2 α (min)

orfloxacin/Na caprate 1:5 0.994 30 (900)
orfloxacin/Na caprate 1:1 0.982 30 (1000)
orfloxacin/EDTA 1:5 0.998 20 (200)
orfloxacin/EDTA 1:1 0.998 7.04 × 10−2

orfloxacin 0.996 9.88 × 10−3
iomedical Analysis 45 (2007) 251–256 253

oxacin, are investigated in this work. This data was selected
ecause the dissolution curves of norfloxacin exhibit pro-
ounced induction periods as well as distinct asymmetry. These
eatures make them difficult to characterize accurately/precisely
sing the general dissolution models discussed in Section 1.1.
he sigmoidal behavior, alone, makes these curves difficult to
escribe using Eq. (2). While Eq. (4) is often successful (in
he author’s experience) at modeling symmetrical C/C∞–t sig-

oids, it has difficulty describing more asymmetric trends and,
urthermore, it does not define a precise start time for the conver-
ion (thus, it does a poor job of explaining the induction period,
.g. [20]). Papadopoulou et al. have noted in a recent work that
alues of n in Eq. (4) that are greater than unity generally corre-
pond to sigmoid curves which may be ‘indicative of complex
elease mechanisms’ [14].

As an aside, the type of experimental apparatus used by
os Santos et al. [19], which inevitably introduces a ‘time lag’
etween the solution sampling and analysis, is not thought to
ramatically affect the dissolution profiles shown in this work
ecause the lag can be considered to be essentially constant over
he course of the experiment (perhaps, with some random vari-
tion); thus, it cannot be responsible for the slower initial rate
bserved at the start of the experiment (the induction period)
elative to that at the mid-point of the dissolution event, i.e.
he sigmoidal C/C∞–t trends in which the (specific) dissolution
ate changes systematically over the course of the conversion.
or this reason, the dissolution profiles of various APIs/their
ormulations collected using such (traditional) equipment are
hought to accurately reflect the kinetics of the r.d.s. of the over-
ll mechanism, and are not expected to be significantly affected
y experimental artifacts.

In contrast to Eq. (2), Eqs. (3)–(5) can be seen (by examining
igs. 1 and 2 and Table 1) to describe the complex dissolution
rofiles of norfloxacin reasonably well. Furthermore, this equa-
ion defines the start time of dissolution at exactly t = 0. The
uthor believes that Eq. (5) may be the simplest kinetic model
n the literature that most accurately explains all types of disso-
ution data. As this model attributes the (asymmetric) sigmoidal
hapes exhibited by many dissolution curves to molecular-level
ispersion in the activation energy barrier (which ultimately
ives rise to the existence of the ‘M–B-like’ distribution of acti-
ation energies mentioned earlier), it represents a very different

iew of dissolution kinetics from the macroscopic models most
ften presented in the literature, to-date.

The quality of the regression fits to the dissolution profiles
n Fig. 1, using Eq. (5), can be seen to range from R2 = 0.983

. (5) (see text for details). In parentheses are shown the corresponding standard

β (min)−2 Standard error of estimate

3 × 10−4 (1 × 10−2) 0.0316
3 × 10−4 (1 × 10−2) 0.0557
2 × 10−4 (2 × 10−3) 0.0210

(1.1 × 10−3) 1.45 × 10−2 (8 × 10−4) 0.0160
(9 × 10−5) 1.1 × 10−1 (8 × 10−2) 0.0092
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ig. 1. Dissolution profiles for various norfloxacin formulations, extracted from
ef. [19]. The lines represent regression fits of the data using Eq. (5); see Table 1

or details.

o 0.998. Overall, the good quality of these fits supports the use
f the model in the kinetic modeling of dispersive dissolution
urves and it helps to verify some of the initial assumptions made
uring the development of the equation [10,17,18]. Note that Eq.
5) has been used previously by the author to fit the kinetic data of

ther homogeneous dispersive processes (i.e. conversions which
lso produce deceleratory C/C∞–t sigmoids), including the ther-
al decomposition of various crystalline compounds [10,17,18].

ig. 2. Dissolution profile for the norfloxacin/EDTA 1:1 formulation in Fig. 1,
resented alone for improved clarity. The thick, solid line represents a regression
t of the data using Eq. (5); R2 = 0.998. The other lines are regression fits to the
ame data using the conventional kinetic models described in the text; fit quality
aries from R2 = 0.893 for Eq. (2) to R2 = 0.993 for Eq. (4).
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The values of the α and β parameters extracted from these
egression fits (see Table 1), when used together in Eq. (5),
ay be used to obtain a reasonable prediction of the dissolu-

ion time required to achieve a desired solution concentration,
or each of the norfloxacin formulations presented in this work
at constant temperature). Note, however, that as the rate of dis-
olution is dependent on both the relative magnitudes of α and
as well as the absolute value of each parameter, a direct com-

arison of the dissolution rates using the values in Table 1 can
e somewhat challenging. This issue is further compounded by
he large errors associated with some of the rate parameters in
he table; only for two of the five formulations are the standard
rrors for α and β smaller than their determined values. How-
ver, despite this finding, the standard errors of estimate of the
egression fits appear to be quite reasonable. For example, for
he slowest-dissolving norfloxacin/EDTA 1:5 formulation, after
5 min of dissolution time, the difference between the actual
experimentally determined) amount of drug dissolved and the
mount predicted from Eq. (5) is −0.9%. For comparison, for
he fastest-dissolving norfloxacin/Na caprate 1:5 formulation,
he corresponding difference (after 65 min) is 0.0%.

Fig. 2 serves largely to exemplify the observation that it may
e possible to obtain reasonably good fits to essentially all of the
ata points, even for ‘complex dissolution curves’, using Eq. (5).
or this reason, the practice of disregarding the induction period

n the modeling of dissolution kinetics should be discouraged,
articularly because the induction period is a key component
f many dissolution profiles and because Eq. (5) provides a

eneral, physical explanation for its existence (i.e. beyond the
reviously reported, qualitative observations mentioned in Sec-
ion 1.1) which further supports its use in kinetic modeling; the
uration of the induction period is established largely by the

ig. 3. Mean plasma concentration of norfloxacin vs. time (0–12 h) profiles
btained following oral dosing of rabbits at 10 mg/kg using various drug prepa-
ations, reproduced from Ref. [19]. The lines represent regression fits of the data
oints to a fourth-order polynomial, for four of the six formulations; see Table 2
or details.
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Table 2
Coefficients extracted using regression fits of the equation y = a + bx + cx2 + dx3 + ex4 (i.e. for a ‘y vs. x’ plot) to the data points in Fig. 3. See text for details

Formulation Fit quality, R2 a b c d e

Norfloxacin/Na caprate 1:5 0.994 −3.375 213.0 −52.40 4.572 −0.1372
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orfloxacin/Na caprate 1:1 0.968 12.10
orfloxacin/EDTA 1:5 0.962 2.613
orfloxacin 0.978 4.299

elative magnitudes of the rate parameters, α and β, in Eq. (5).
n the other hand, for cases of very slow dissolution, the latter
art of the dissolution curve may be of more interest to workers
han the initial portion. Note that the regression fits of the other

odels presented in Section 1 to the dissolution curve in Fig. 2
re not as good as the fit of Eq. (5).

To present a possible area for future work, the bioavailabil-
ty data from Ref. [19] is also reproduced here, in Fig. 3 (see
gure caption for experimental details). In this figure, the data
oints were arbitrarily fit to a fourth-order polynomial using
egression analysis. Four of the six ‘fit curves’ generated were
ound to be visually reasonable in modeling the data: these
urves correspond to the pure norfloxacin, norfloxacin/EDTA
:5, norfloxacin/Na caprate 1:1 and norfloxacin/Na caprate 1:5
ormulations. The fits of the data sets for each of these four
ormulations are shown in the figure and the corresponding
egression fit parameters are provided in Table 2. The quality
f the fits was found to range from R2 = 0.962 to 0.994. For
he remaining two data sets, the larger degree of scatter in the
ata points (mainly at longer t) produced what appeared to be
imodal dissolution behavior; thus, these fit curves were omitted
rom the figure and they are also not described in the table.
Mathematical integration of the fit functions described in
able 2 yielded corresponding ‘area-under-curve’ (AUC) expo-
ures, as a function of time (i.e. following administration). These
AUC0−t’ functions (one for each of the four formulations fit in

ig. 4. Plots of the integrated fit functions shown in Fig. 3 (i.e. for the four
ormulations listed in Table 2), yielding corresponding norfloxacin exposures
AUC0−t) as a function of time.
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231.0 −70.56 7.361 −0.2566
101.3 −19.32 1.268 −0.0260
19.19 4.557 −0.7982 0.0295

ig. 3) are plotted in Fig. 4. As these plots also appear sig-
oidal, it is possible that the net/cumulative exposure of the

arious oral formulations of norfloxacin may be represented
y a mathematical convolution of the dissolution profiles (i.e.
he curves in Fig. 1) with some ‘biological action’ function(s).
he implication of this observation is clear: if one can accu-

ately/consistently model dissolution profiles in the laboratory
i.e. with Eq. (5), or its simplified form, Eq. (2), depending on
hether or not the dissolution is dispersive), it may, resultantly,
e possible to differentiate (i.e. ‘subtract out’) a drug’s native
issolution kinetics from the in vivo contribution responsible
or producing the overall exposure for a particular compound
nd/or formulation. Thus, it may ultimately be possible to extract
global) ‘in vivo functions’ from the AUC data (for which mod-
ls can then be developed in the future) which describe the
inetics of the bodily functions relevant to the given exposure
rofile.

. Conclusions

Eq. (5), which is presented here as a novel, dispersive kinetic
odel for dissolution, is based on the assumptions of an acti-

ation energy distribution of the Maxwell–Boltzmann type,
first-order kinetic rate law and a ‘2D denucleation’ rate-

imiting step. The model was shown to accurately describe the
omplex dissolution profiles of various formulations of nor-
oxacin. As the equation has the ability to fit both sigmoidal
dispersive) and logarithmic (non-dispersive, i.e. first-order or
Noyes–Whitney/Nernst–Brunner-like’) C/C∞–t trends, it is
elieved that Eq. (5) may potentially serve as a simple yet
niversal model for dissolution.
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